平成 19 年度

オホーツク海南西海域海氷観測報告書

観測期間:平成 20 年 2 月 8 日~14 日

第一管区海上保安本部

1 調査概要

1.1 目的

北海道オホーツク海沿岸海域における海氷による海難防止のために海氷の分布と動向を把握する ため。

1.2 調查区域

オホーツク海南西海域 (図1のとおり)

1.3 調査期間及び経過概要

(1) 現地作業期間

平成20年2月8日から2月14日までの7日間

(2) 経過概要

平成 20 年 2 月 8 日 : 小樽出港 平成 20 年 2 月 9 日 : XBT、STD 及び流況観測、航空機による海氷観測 平成 20 年 2 月 10 日 : XBT、STD 及び流況観測、航空機による海氷観測 平成 20 年 2 月 11 日 : XCTD 及び流況観測、航空機による海氷観測 平成 20 年 2 月 12 日 : XBT、STD、XCTD 及び流況観測 平成 20 年 2 月 13 日 : XBT、STD 及び流況観測、航空機による海氷観測 平成 20 年 2 月 13 日 : XBT、STD 及び流況観測、航空機による海氷観測 平成 20 年 2 月 14 日 : 小樽入港

1.4 調査方法

調査方法等は以下のとおり。

(1) 水温及び水温・塩分観測

機 種:鶴見精機株式会社製 投下式電気伝導度水温水深測定装置 (MK-130)
観 測 層:海底までの連続水温及び連続水温・塩分 (プローブは T-6(460m) 及び XCTD プローブ 1(1,000m) を使用)

機 種:アレック電子社製 電気伝導度水温水深測定装置 (AST500)

観 測 層:水深 150m までの連続水温・塩分

(2) 海氷目視観測

目視による氷状・密接度の観測

- (3) 流況観測
 - 機 種: RD Inc. 社製ワークホース ADCP (センチネル)

観 測 層:海面下 10m から 5m 毎の 5 層

3 調査結果

水温鉛直断面分布を図 2.1 から図 2.3 に、塩分鉛直断面分布を図 3.1 から図 3.2 に示す。

測点 01,02,05,08,10,13,17 における TS ダイヤグラムを図 4 に、ワークホースADCPによる流 況観測結果を図 5.1 から図 5.5 に示す。

図 6.1 から図 6.4 に「そうや」搭載機による海氷目視観測による分布状況を示す。

また、標準観測層における観測結果を表 1.1 及び 1.2 に示す。

2.1 海況

st.01 は、高温高塩の上下層とも一様な水であり、宗谷暖流系の水(以下、SW 塩分 33.6 以上) である。一方東沖の st.02 では、オホーツク海表層低塩分水(以下、LSW 塩分 32.5 以下)から SW 方への変化を示しており、SW、LSW 双方の影響を受けている。

枝幸からサロマ湖にかけての沿岸域では、高温高塩と低温低塩の二極化した水塊分布をしている、st.5 と st.6 が水深 10m ~ 20m まで LSW の影響を受け、以深は SW の影響を受けている、st.8 は水深 50m 付近まで LSW の影響を受けている。

鉛直断面分布図(図 2.1)において st.3~st.5の下層に約 2 の高温域があること、また、st.5 における流況も概ね平岸方向の流れであることから、宗谷暖流の影響は枝幸附近に達していたものと思慮される。

沖合測点では、オホーツク海中冷水(塩分 32.8~33.4、水温-1.8~+2) で占められている。

2.2 海氷の分布状況

9日、10日、11及び13日の観測海域の海氷分布は、次のとおり。

- 9日:北海道沿岸の宗谷岬から沙留岬にかけては流氷は接岸していない。紋別付近では流氷が 接岸しているが、ほとんどがニラス、ハス葉氷であった。沖合いの海氷はニラス、板氷が多く 所々で小氷盤がみられた。
- 10 日:北海道沿岸、紋別付近から知床半島にかけて、流氷が接岸しており、ニラス、板氷が混 在していた。
- 11 日:観測範囲内の流氷は小氷盤、板氷がおおく、一部では直径 200m 以上の中氷盤も見ら れた。しかしその多くは小氷盤や板氷の間に新成氷のできた氷盤だった。
- 13日:北海道沿岸、浜猿払から紋別にかけて流氷の接岸は見られなかった。沖合では、中氷 盤、小氷盤も見られたが、ほとんどは板氷、小板氷だった。

図 2.1: 水温鉛直断面分布 (st.02-st.08)

図 2.3: 水温鉛直断面分布 (st.13-st.17)

図 3.2: 塩分鉛直断面分布 (st.13-st.17)

10m layer current

図 5.1: 流況図 (10m)

15m layer current

20m layer current

図 5.3: 流況図(20m)

25m layer current

30m layer current

図 5.5: 流況図(30m)

ENT 層 (kt)	0.8		0.1								0.3			0.4						0.2					¢ 0	c.0								0.4		
CURR 10m	283		105								202			214						124					181	107								169		
SL (m)																																				
250																															0.28		33.289	0.47	01000	00.00
200 1000																											l				-0.12		33.189 	0.34	00 00	
150 900																-						-0.47									-0.85		33.063	1.41	2.19 22.265	34.146
125 800																						-140				10.1	32.984	1 10	8C. -	32.968	-1.45	2.21	32.969 24 116	1.26	2.12	34.087
100																				1.59	33.40	-1 20			1 50	вс: 	2.928	1 50	ac:1-	2.937	-1.22	2.01	2.939	0.81	2.05	4.024
75 800			1.24	33.53	2.15			2.38												1.46	33.21	-141			07	04.1	2.806 3	1 1	+0. -	2.814 3	-0.19	1.57	2.922 3	0.04	1.74	3.846 3
			1.55	2.53	0.57			2.42			1.89		3.74	1.47		3.62	0.77			0.86	2.69	140			09	80.	670 32	7	*	.709 32	1.17	1.23	.781 32 505 33	0.54	1.35	.654 33
20 20			- 1.70	2.26 3	48			0.64			.86		3.74 3	35		3.59 3	0.15 			- 1.64	2.45 3				19		607 32	5	- Z0:	626 32	- 151	7.97	648 32 537 33	- 96.0	1.09	572 33
0 3 44	.70	06'		20 3:				50			68		.59 3:	41	:	.30 3;	.50			.63	42 3	1			2	- 	565 32.	63	- 	325 32.	.52	.62 (337 32. 156 33	.07	.81 Sec 27	194 33.
20 40	70 2	88 33	-1	21 32	68 -1	1		57 -1			54 0		31 33	55 0	;	77 33	.55 -1			66 -1	34 32	66		I	1		02 32.5			90 32.6	57 -1	46 0	80 32.6 98 32.6	13 -1	56 0	33 33.4
10	5.	33.	Ť.	32.	- -			- -			- - -		7 32.	, 4		32.	9 I				35.						32.4			32.5	. <u> </u>	0	32.5		1 226	33.4
0	2.70	33.86	-1.65	32.12	- 1.60	I		-1.58			-1.45		32.27	-0-12		32.63	-1.5			-1.51	31.92	191			1 8		32.293	1 9	<u>0</u>	32.569	-1.58	0.23	32.550	-1.23	0.74	33.415
	mp. (degC	Sal(PSU	mp. (degC	Sal(PSU)	mp. (degC		Sal(PSU	mp. (degC		Sal(PSU	mp. (degC		Sal(PSU	mn (derC		Sal(PSU	mp. (degC	Sal(PSU)		mp. (degC	Sal(PSU)	mn (deaf)		Sal(PSU	مت رموس	mp. (dego	Sal(PSU)	(10P)	mp. (degu	Sal(PSU)	mp. (degC		Sal(PSU	mp. (degC		
	STD Te		STD Te		XBT Te			XBT Te			STD Te			STD Te	1		XBT Te			STD Te		ХВТ Те			VOTD T			T ULUX	ACIU Ie		XCTD T∈			XCTD T∈		
Air de#C)	9.0		-0.3		-2.2			-2.2			-2.2			-4.4			-3.8			-5.0		-43	2		- 9 -			2	4.0-		-2.5			-0.9		
TMOS (a	1019.0		1019.5		1019.0			1019.0			1019.0			1023.0			1024.0			1024.0		1022.0			0000	0.2201		0,000	0.2201		1019.0			1018.0		
E A	e		2		-			-			-																									
WAV Dir. O	MSM		ene		Ð			SSe			sse																									
ND Class	4		e		2			e			e			4	•		2					e.	•		-	t		ç	n		4			4		
Dir. M	MSM		ene		Ð			sse			sse			SSe			sse					ene ene	2		0	D			Ð		sse			sse		
LONG.(E)	142-100		142-40.0		142-40.0			142-40.0			142-40.0			143-00.0			143-25.0			143-50.0		144-00.0			0.01-111	144-10.0		0.06-111	144-ZU.U		144-30.0			144-40.0		
AT.(N)	5-30.0		15-30.0		15-20.0			15-10.0			15-00.0			4-40.0			4-27.0			4-20.0		4-30.0			000-01	4-40.0		11-50.0	14-50.0		15-00.0			15-10.0		
TIME L	0910 4		1240 4		1432 4			1512 4			1550 4			0733 4			1019 4			1215 4		1357 4			6100	0340		0711	1140		1323 4			1446 4		
DATE	20080209		20080209		20080209			20080209			20080209			20080210			20080210			20080210		20080210			1100000	11700007			20080211		20080211			20080211		
st. No	-		2		e			4			5			ę	,		7			8		σ	•		ç	2		;	=		12			13		

表 1.1: XBT,XCTD,STD 観測成果表 (1/2)

RENT 画 Mal(L+)	Verkku		0.9					0.4						I							
CURF 10n	344					279								I							
SL (m)																					
250	0.21	33.268	1.42	33.359																	
200	-0.60	33.081	1.60	33.300	-1.30																
150	-1.37	32.970	1.13	33.157	-1.31																
125	-1.69	2.18 32.943 34.056	-1.52	32.958	-1.66					1 23							2.29				
100	-1.71	z.00 32.904 33.958	-1.35	32.938	-1.75			-1.71	32.68	-051							1.99				
75 600	-1.76	1./3 12.886 13.810	-1.12	2.868	-1.68			-1.66	32.59	154				0.45	33.16		0.72				
50	-1.70	1.39 2.837 3 3.657 3	-0.02 1.21	2.842 3 3.613	-1.70			-1.63	32.52	1 22	8			-1.64	32 48	P	-1.34				
30	-1.72	1.05 2.743 3. 3.545 3.	0.04		-1.72			-1.60	82.46	=				-1.70	10 45		-1.62				
0.5	1.68	0.08 .684 32 .456 33	0.86 0.57	665 32 430 33	1.65			1.63	2.25 3	- 181			;	- 17.1	6 67 6	;	1.73 -				
0 9	- 70		.55	482 32 383 33	.65			- 69	26 3	- 22	2		;	- 72	41 3	5 E	- 69				
	о I	33. 33. 33.	- C	337	• 4 . −		1	Г 6	37	ι Ια	- -	1	1.	7	3		9	1		!	
0	-1.7	32.61: 33.34	-1.5	32.43 33.36	-1.6		I	-1.6	32.2	e	2	I		-1.7	202		-1.6	I		l	
	XCTD Temp. (degC)	Sal(PSU)	XCTD Temp. (degC)	Sal(PSU)	XBT Temp. (degC)	Sal(PSU)		STD Temp. (degC)	Sal(PSU)	YRT Temn (derC)		Sal(PSU)		STD Temp. (degC)	Cal(DSII)		XBT Temp. (degC)		OBIL POU		
Air	-1.2		-0.9		-1.6			-4.0		20	ò			-2.3			-2.0				
TMOS	1005.0		1003.0		1004.0			1004.0		004 5	0.100			993.5			992.0				
Γ γ																					
NA)	-													l							
ND	0.855		e		9			7		4	•		'	2			5				
ĬŇ ,	se se		8		N			wsw		maa				Ň			>				
LONG.(E)	144-20.0		144-00.0		143-40.0			143-30.0		143-20.0				143-15.0			143-10.0				
AT.(N)	5-10.0		5-10.0		5-10.0			5-10.0		2-000	200		1	4-55.0			4-50.0				
T ME L	0735 4.		1119 4		1339 4.			1615 4		1010				1125 4			1234 4				
ATE T	080212 (080212		080212			080212		180313	2 1000			080213			080213				
۵ بو	14 20		15 20		16 20			17 20		18 20	2			19 20			20 20				
st.																					

表 1.2: XBT,XCTD, STD 観測成果表 (2/2)

図 6.2:2月 10日の海氷分布

図 6.1:2月9日の海氷分布

